snwy's picture
repro code
aee6a1a verified
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Layer surgery on safetensors shards:
# - Replace selected transformer blocks with donor blocks
# - Optionally rescale specific projections per layer
#
# Example:
# python layer_surgery.py \
# --composite ./qwen3-8b-plus-moe-64L \
# --base Qwen/Qwen3-8B \
# --out ./qwen3-8b-plus-moe-64L-surgery \
# --replace_layers 61 \
# --map ratio
import argparse
import glob
import json
import math
import os
import shutil
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import torch
from safetensors import safe_open
from safetensors.torch import save_file
from huggingface_hub import snapshot_download
def read_json(p: str) -> Dict:
with open(p, "r") as f:
return json.load(f)
def write_json(p: Path, data: Dict):
with open(p, "w") as f:
json.dump(data, f, indent=2)
def ensure_local(model_or_path: str) -> str:
if os.path.isdir(model_or_path):
return model_or_path
print(f"Downloading {model_or_path} ...")
return snapshot_download(
model_or_path, cache_dir="./model_cache", resume_download=True
)
def index_dir(model_dir: str) -> Tuple[Dict[str, str], List[str]]:
idx_path = os.path.join(model_dir, "model.safetensors.index.json")
weight_map: Dict[str, str] = {}
files: List[str] = []
if os.path.exists(idx_path):
idx = read_json(idx_path)
weight_map = idx.get("weight_map", {})
files = sorted(list({os.path.join(model_dir, f) for f in weight_map.values()}))
return weight_map, files
st_files = glob.glob(os.path.join(model_dir, "*.safetensors"))
if not st_files:
raise FileNotFoundError(f"No .safetensors found in {model_dir}")
for fpath in st_files:
with safe_open(fpath, framework="pt") as f:
for k in f.keys():
weight_map[k] = os.path.basename(fpath)
files = sorted(st_files)
return weight_map, files
def parse_layers(spec: str) -> List[int]:
out: List[int] = []
for chunk in spec.split(","):
chunk = chunk.strip()
if not chunk:
continue
if "-" in chunk:
a, b = chunk.split("-")
a, b = int(a), int(b)
out.extend(list(range(a, b + 1)))
else:
out.append(int(chunk))
return sorted(list({x for x in out}))
def layer_prefix(li: int) -> str:
return f"model.layers.{li}."
def map_layer(dst_idx: int, dst_total: int, src_total: int, mode: str) -> int:
if src_total <= 0:
raise ValueError("src_total must be > 0")
if mode == "wrap":
return dst_idx % src_total
x = int(math.floor(dst_idx * src_total / max(1, dst_total)))
return max(0, min(src_total - 1, x))
def build_explicit_map(pairs: Optional[str]) -> Dict[int, int]:
m: Dict[int, int] = {}
if not pairs:
return m
for token in pairs.split(","):
token = token.strip()
if not token:
continue
a, b = token.split(":")
m[int(a)] = int(b)
return m
SCALE_KEYS = {
"attn_q": ".self_attn.q_proj.weight",
"attn_k": ".self_attn.k_proj.weight",
"attn_v": ".self_attn.v_proj.weight",
"attn_o": ".self_attn.o_proj.weight",
"mlp_up": ".mlp.up_proj.weight",
"mlp_gate": ".mlp.gate_proj.weight",
"mlp_down": ".mlp.down_proj.weight",
}
def load_scales(scale_json: Optional[str]) -> Dict[int, Dict[str, float]]:
if not scale_json:
return {}
data = read_json(scale_json)
out: Dict[int, Dict[str, float]] = {}
for k, v in data.items():
li = int(k)
out[li] = {}
for mk, sf in v.items():
if mk not in SCALE_KEYS:
raise ValueError(f"Unknown scale key '{mk}'. Valid: {list(SCALE_KEYS)}")
out[li][mk] = float(sf)
return out
def tensor_layer_idx(tensor_name: str) -> Optional[int]:
parts = tensor_name.split(".")
if len(parts) > 3 and parts[0] == "model" and parts[1] == "layers":
try:
return int(parts[2])
except Exception:
return None
return None
def apply_scales_if_needed(
tname: str, tensor: torch.Tensor, li: int, scales: Dict[int, Dict[str, float]]
) -> torch.Tensor:
if li not in scales:
return tensor
spec = scales[li]
for key, suffix in SCALE_KEYS.items():
if key in spec and tname.endswith(suffix):
s = spec[key]
return (tensor * tensor.new_tensor(s)).contiguous()
return tensor
def main():
ap = argparse.ArgumentParser(
description="Layer surgery on safetensors: replace and/or rescale layers."
)
ap.add_argument("--composite", type=str, required=True)
ap.add_argument("--base", type=str, help="Donor model dir or HF ID")
ap.add_argument("--out", type=str, required=True)
ap.add_argument("--replace_layers", type=str, help='e.g. "61" or "48-55,60,62"')
ap.add_argument(
"--map", type=str, default="ratio", choices=["ratio", "wrap"]
)
ap.add_argument("--map_pairs", type=str, help='e.g. "61:34,55:30"')
ap.add_argument("--scale_json", type=str)
args = ap.parse_args()
comp_dir = ensure_local(args.composite)
out_dir = Path(args.out)
out_dir.mkdir(parents=True, exist_ok=True)
comp_cfg = read_json(os.path.join(comp_dir, "config.json"))
L_comp = int(comp_cfg.get("num_hidden_layers"))
print(f"Composite layers: {L_comp}")
replace_set: List[int] = []
if args.replace_layers:
replace_set = parse_layers(args.replace_layers)
if not args.base:
raise ValueError("--base is required when --replace_layers is set.")
base_dir = ensure_local(args.base)
base_cfg = read_json(os.path.join(base_dir, "config.json"))
L_base = int(base_cfg.get("num_hidden_layers"))
print(f"Donor layers: {L_base}")
explicit = build_explicit_map(args.map_pairs)
else:
base_dir = ""
L_base = 0
explicit = {}
comp_map, comp_files = index_dir(comp_dir)
if replace_set:
base_map, base_files = index_dir(base_dir)
else:
base_map, base_files = {}, []
scales = load_scales(args.scale_json)
if scales:
print("Scales loaded for layers:", sorted(scales.keys()))
to_copy = [
"config.json",
"tokenizer.json",
"tokenizer_config.json",
"special_tokens_map.json",
"vocab.json",
"merges.txt",
"tokenizer.model",
"generation_config.json",
]
for fname in to_copy:
src = os.path.join(comp_dir, fname)
if os.path.exists(src):
shutil.copy2(src, out_dir / fname)
print("Performing surgery shard-by-shard...")
out_weight_map: Dict[str, str] = {}
for comp_f in comp_files:
rel = os.path.basename(comp_f)
out_f = out_dir / rel
new_tensors: Dict[str, torch.Tensor] = {}
with safe_open(comp_f, framework="pt") as fcomp:
keys = list(fcomp.keys())
for k in keys:
li = tensor_layer_idx(k)
tensor = None
if li is not None and li in replace_set:
if li in explicit:
src_li = explicit[li]
else:
src_li = map_layer(li, L_comp, L_base, args.map)
src_prefix = layer_prefix(src_li)
dst_prefix = layer_prefix(li)
donor_k = src_prefix + k[len(dst_prefix) :]
donor_file = base_map.get(donor_k)
if donor_file is None:
raise KeyError(f"Donor tensor not found: {donor_k}")
donor_path = os.path.join(base_dir, donor_file)
with safe_open(donor_path, framework="pt") as fbase:
tensor = fbase.get_tensor(donor_k)
else:
tensor = fcomp.get_tensor(k)
if li is not None:
tensor = apply_scales_if_needed(k, tensor, li, scales)
if not tensor.is_contiguous():
tensor = tensor.contiguous()
new_tensors[k] = tensor
out_weight_map[k] = rel
save_file(new_tensors, str(out_f))
total_size = 0
for fname in set(out_weight_map.values()):
fp = out_dir / fname
if fp.exists():
total_size += fp.stat().st_size
index = {"metadata": {"total_size": total_size, "format": "safetensors"}, "weight_map": out_weight_map}
write_json(out_dir / "model.safetensors.index.json", index)
print(f"Done. Wrote modified shards and index to: {out_dir}")
print("\nTip: validate load quickly (meta device):")
print(f" from transformers import AutoModelForCausalLM")
print(f" AutoModelForCausalLM.from_pretrained('{str(out_dir)}', device_map='meta', trust_remote_code=True)")
if __name__ == "__main__":
main()