LateOn-Code

The LateOn-Code collection is composed of PyLate models optimized for code retrieval. These late interaction models are first pre-trained following the methodology of CoRNStack. These pre-trained models are then further fine-tuned on train sets of CoIR using the nv-retriever methodology to mine hard negatives while preventing false negatives.

We started from the two best ColBERT models on the BEIR benchmark for their respective sizes. The first one, LateOn-Code is based on in-house LateOn model, a new version of GTE-ModernColBERT-v1 built on ModernBERT-base (also developed at LightOn). This version underwent significantly deeper training, crossing the 57 mark on BEIR, almost a 2.5-point improvement and is thus SOTA by a large margin. We'll release this base model along with training data and boilerplates in the near future, so stay tuned! The second, LateOn-Code-edge is a smaller model based on the edge-colbert model family from mixedbread, using the smallest variant (Ettin-17M) for maximum efficiency. For more details on the training setup, please refer to our blogpost.

The original CoRNStack data in a format compatible with PyLate can be found here while the fine-tuning data can be found here. Training boilerplates can be found here in the PyLate repository

MTEB (Code, v1) benchmark results

Pre-trained models achieve very competitive results as the 17M model outperforms the very strong granite-embedding-small-english-r2 by an average of 1.7. This is truly impressive, as the granite model is almost three times bigger (17M vs 48M), but is also a beast on its own in the <100M parameters range. It also outperforms the larger granite variant (149M). The larger version nicely scales by improving over the performance of its little sibling by 6.5 on average.

Although the pre-training results are already very impressive given that they are mostly out-of-domain, running a proper fine-tuning using the training data of CoIR significantly boost the performance of the models. Notably, the 17M model increases from 57.50 to 66.64 (+9.14), getting pretty close to EmbeddingGemma-300M while being 17 times smaller. The larger one increases from 63.77 to 74.12 (+10.35), strongly outperforming EmbeddingGemma-300M and getting closer to strong LLM models such as Qwen3-Embedding-0.6B and C2LLM-0.5B while being much smaller.

Model Params Type Avg Apps COIR CSNet CodeEdit CodeFB MT CodeFB ST CSNet CC CSNet CodeTrans Contest CodeTrans DL CosQA StackOF QA Synth T2SQL
Baseline
BM25 - Lexical 44.41 4.76 40.86 49.85 59.19 68.15 53.97 60.01 47.78 34.42 18.75 70.26 24.94
Small (≤50M)
granite-embedding-small-english-r2 47M Single vector 55.84 13.54 60.46 57.16 52.19 76.85 48.42 78.28 77.63 33.63 35.58 90.04 46.33
LateOn-Code-edge-pretrain 17M Multi vector 57.50 10.81 73.78 62.07 51.92 76.65 63.22 88.03 71.31 33.16 30.53 74.63 53.83
LateOn-Code-edge 17M Multi vector 66.64 26.22 81.60 62.21 74.25 87.12 79.26 87.85 75.36 37.08 40.54 85.63 62.57
Δ (fine-tune - pretrain) +9.14 +15.41 +7.82 +0.14 +22.33 +10.47 +16.04 -0.18 +4.05 +3.92 +10.01 +11.00 +8.74
Medium (100M–300M)
granite-embedding-english-r2 149M Single vector 57.22 13.96 64.65 59.35 52.54 77.18 47.67 80.79 77.07 35.03 37.01 91.80 49.55
CodeRankEmbed 137M Single vector 60.47 23.45 83.20 59.98 42.61 78.10 68.89 89.50 66.43 34.49 35.17 80.53 63.27
GTE-ModernBERT 149M Single vector 71.66 57.72 83.10 55.83 86.15 86.00 93.61 88.76 72.35 37.27 43.36 91.14 64.61
embeddinggemma-300m 300M Single vector 68.76 84.39 75.54 62.10 51.42 80.26 73.71 90.15 85.51 33.52 43.60 86.47 58.42
LateOn-Code-pretrain 149M Multi vector 63.77 23.09 80.27 68.74 50.21 82.66 71.47 91.05 82.20 34.46 34.15 85.61 61.34
LateOn-Code 149M Multi vector 74.12 54.76 86.57 64.99 82.22 90.40 89.32 90.40 87.44 41.00 45.23 93.43 63.67
Δ (fine-tune - pretrain) +10.35 +31.67 +6.30 -3.75 +32.01 +7.74 +17.85 -0.65 +5.24 +6.54 +11.08 +7.82 +2.33
Large (≥500M)
C2LLM-0.5B 500M Single vector 75.46 61.02 86.71 71.39 92.29 88.63 96.29 89.20 84.27 33.99 38.30 89.40 74.08
Qwen3-Embedding-0.6B 600M Single vector 75.42 75.34 84.69 64.42 90.82 86.39 91.72 91.01 86.05 31.36 36.48 89.99 76.74

Best result across all sizes is underlined. Best within each size category is bolded.

Colgrep

The LateOn-Code family model can easily be used within ColGrep, an easy-to-use search tool that give their powerful search capabilities to coding agent. It has been designed to extend grep capabilities to get the best of both world and is very effective to enhance the quality of the answer while diminishing answer time and tokens consumption. Given the performance of the very light-weight 17M model, it can easily run quickly on any computer.

Install ColGrep

# macOS / Linux
curl --proto '=https' --tlsv1.2 -LsSf https://github.com/lightonai/next-plaid/releases/latest/download/colgrep-installer.sh | sh

# Windows (PowerShell)
powershell -c "irm https://github.com/lightonai/next-plaid/releases/latest/download/colgrep-installer.ps1 | iex"

Search

# Semantic search — find code by meaning
colgrep "function that retries HTTP requests"

# Regex search
colgrep -e "async fn\s+\w+"

# Hybrid — regex narrows candidates, semantics ranks them
colgrep -e "Result<" "error handling" --include="*.rs"

Install for Claude Code

colgrep --install-claude-code

Choose a Model

# Set the model
colgrep set-model lightonai/LateOn-Code  # default: lightonai/LateOn-Code-edge

For more information about ColGrep, please refer to the official documentation

PyLate

This is a PyLate model finetuned from lightonai/LateOn-Code-edge-pretrain on the apps, synthetictext2sql, cosqa, codefeedbackst, codefeedbackmt, stackoverflowqa, codetranscontest, codetransdl, CodeSearchNet_go, CodeSearchNet_java, CodeSearchNet_javascript, CodeSearchNet_php, CodeSearchNet_python, CodeSearchNet_ruby, CodeSearchNet_ccr_go, CodeSearchNet_ccr_java, CodeSearchNet_ccr_javascript, CodeSearchNet_ccr_php, CodeSearchNet_ccr_python and CodeSearchNet_ccr_ruby datasets. It maps sentences & paragraphs to sequences of 48-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.

Model Details

Model Description

Model Sources

Full Model Architecture

ColBERT(
  (0): Transformer({'max_seq_length': 2047, 'do_lower_case': True, 'architecture': 'ModernBertModel'})
  (1): Dense({'in_features': 256, 'out_features': 512, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity', 'use_residual': False})
  (2): Dense({'in_features': 512, 'out_features': 48, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity', 'use_residual': False})
)

Usage

First install the PyLate library:

pip install -U pylate

Retrieval

Use this model with PyLate to index and retrieve documents. The index uses FastPLAID for efficient similarity search.

Indexing documents

Load the ColBERT model and initialize the PLAID index, then encode and index your documents:

from pylate import indexes, models, retrieve

# Step 1: Load the ColBERT model
model = models.ColBERT(
    model_name_or_path="pylate_model_id",
)

# Step 2: Initialize the PLAID index
index = indexes.PLAID(
    index_folder="pylate-index",
    index_name="index",
    override=True,  # This overwrites the existing index if any
)

# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]

documents_embeddings = model.encode(
    documents,
    batch_size=32,
    is_query=False,  # Ensure that it is set to False to indicate that these are documents, not queries
    show_progress_bar=True,
)

# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
    documents_ids=documents_ids,
    documents_embeddings=documents_embeddings,
)

Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:

# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.PLAID(
    index_folder="pylate-index",
    index_name="index",
)

Retrieving top-k documents for queries

Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries. To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:

# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)

# Step 2: Encode the queries
queries_embeddings = model.encode(
    ["query for document 3", "query for document 1"],
    batch_size=32,
    is_query=True,  #  # Ensure that it is set to False to indicate that these are queries
    show_progress_bar=True,
)

# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
    queries_embeddings=queries_embeddings,
    k=10,  # Retrieve the top 10 matches for each query
)

Reranking

If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:

from pylate import rank, models

queries = [
    "query A",
    "query B",
]

documents = [
    ["document A", "document B"],
    ["document 1", "document C", "document B"],
]

documents_ids = [
    [1, 2],
    [1, 3, 2],
]

model = models.ColBERT(
    model_name_or_path="pylate_model_id",
)

queries_embeddings = model.encode(
    queries,
    is_query=True,
)

documents_embeddings = model.encode(
    documents,
    is_query=False,
)

reranked_documents = rank.rerank(
    documents_ids=documents_ids,
    queries_embeddings=queries_embeddings,
    documents_embeddings=documents_embeddings,
)

Evaluation

Metrics

Py Late Information Retrieval

  • Dataset: ['CodeSearchNetPython', 'CodeSearchNetJavascript', 'CodeSearchNetGo', 'CodeSearchNetRuby', 'CodeSearchNetJava', 'CodeSearchNetPhp']
  • Evaluated with pylate.evaluation.pylate_information_retrieval_evaluator.PyLateInformationRetrievalEvaluator
Metric CodeSearchNetPython CodeSearchNetJavascript CodeSearchNetGo CodeSearchNetRuby CodeSearchNetJava CodeSearchNetPhp
MaxSim_accuracy@1 0.855 0.707 0.92 0.737 0.755 0.802
MaxSim_accuracy@3 0.958 0.815 0.978 0.87 0.914 0.91
MaxSim_accuracy@5 0.972 0.845 0.987 0.899 0.937 0.932
MaxSim_accuracy@10 0.98 0.877 0.991 0.921 0.951 0.953
MaxSim_precision@1 0.855 0.707 0.92 0.737 0.755 0.802
MaxSim_precision@3 0.3193 0.2717 0.326 0.29 0.3047 0.3033
MaxSim_precision@5 0.1944 0.169 0.1974 0.1798 0.1874 0.1864
MaxSim_precision@10 0.098 0.0877 0.0991 0.0921 0.0951 0.0953
MaxSim_recall@1 0.855 0.707 0.92 0.737 0.755 0.802
MaxSim_recall@3 0.958 0.815 0.978 0.87 0.914 0.91
MaxSim_recall@5 0.972 0.845 0.987 0.899 0.937 0.932
MaxSim_recall@10 0.98 0.877 0.991 0.921 0.951 0.953
MaxSim_ndcg@10 0.9244 0.7937 0.9607 0.8357 0.8655 0.8824
MaxSim_mrr@10 0.9058 0.7668 0.9505 0.8076 0.8367 0.8592
MaxSim_map@100 0.9064 0.7696 0.9508 0.8095 0.8379 0.86

Code Search Network

  • Dataset: CodeSearchNet_mean
  • Evaluated with pylate.evaluation.code_search_network_evaluator.CodeSearchNetworkEvaluator
Metric Value
MaxSim_accuracy@1 0.796
MaxSim_accuracy@3 0.9075
MaxSim_accuracy@5 0.9287
MaxSim_accuracy@10 0.9455
MaxSim_precision@1 0.796
MaxSim_precision@3 0.3025
MaxSim_precision@5 0.1857
MaxSim_precision@10 0.0946
MaxSim_recall@1 0.796
MaxSim_recall@3 0.9075
MaxSim_recall@5 0.9287
MaxSim_recall@10 0.9455
MaxSim_ndcg@10 0.8771
MaxSim_mrr@10 0.8544
MaxSim_map@100 0.8557

Training Details

Training Datasets

apps

  • Dataset: apps at 68d15dc
  • Size: 4,985 training samples
  • Approximate statistics based on the first 1000 samples:
    query positive negative_0 negative_1 negative_2 negative_3 negative_4 negative_5 negative_6 negative_7 negative_8 negative_9 negative_10 negative_11 negative_12 negative_13 negative_14 negative_15 negative_16 negative_17 negative_18 negative_19 negative_20 negative_21 negative_22 negative_23 negative_24 negative_25 negative_26 negative_27 negative_28 negative_29 negative_30 negative_31 negative_32 negative_33 negative_34 negative_35 negative_36 negative_37 negative_38 negative_39 negative_40 negative_41 negative_42 negative_43 negative_44 negative_45 negative_46 negative_47 negative_48 negative_49
    type dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict
    details
  • Samples:
    query positive negative_0
    {'query': 'Polycarp has $n$ different binary words. A word called binary if it contains only charact... {'document': "for _ in range(int(input())):\n n = int(input())\n mass = []\n zo = 0\n oz... {'document': "t=int(input())\nfor _ in range(t):\n n=int(input())\n l=list(map(int,input().split()))...
  • Loss: pylate.losses.contrastive.Contrastive

synthetictext2sql

  • Dataset: synthetictext2sql at 68d15dc
  • Size: 99,996 training samples
  • Approximate statistics based on the first 1000 samples:
    query positive negative_0 negative_1 negative_2 negative_3 negative_4 negative_5 negative_6 negative_7 negative_8 negative_9 negative_10 negative_11 negative_12 negative_13 negative_14 negative_15 negative_16 negative_17 negative_18 negative_19 negative_20 negative_21 negative_22 negative_23 negative_24 negative_25 negative_26 negative_27 negative_28 negative_29 negative_30 negative_31 negative_32 negative_33 negative_34 negative_35 negative_36 negative_37 negative_38 negative_39 negative_40 negative_41 negative_42 negative_43 negative_44 negative_45 negative_46 negative_47 negative_48 negative_49
    type dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict
    details
  • Samples:
    query positive negative_0
    {'query': 'What is the total volume of timber sold by each salesperson, sorted by salesperson?', 'qu... {'document': 'SELECT salesperson_id, name, SUM(volume) as total_volume FROM timber_sales JOIN salesp... {'document': 'SELECT salesperson_id, SUM(volume) as total_volume FROM timber_sales JOIN salesperson ...
  • Loss: pylate.losses.contrastive.Contrastive

cosqa

  • Dataset: cosqa at 68d15dc
  • Size: 9,018 training samples
  • Approximate statistics based on the first 1000 samples:
    query positive negative_0 negative_1 negative_2 negative_3 negative_4 negative_5 negative_6 negative_7 negative_8 negative_9 negative_10 negative_11 negative_12 negative_13 negative_14 negative_15 negative_16 negative_17 negative_18 negative_19 negative_20 negative_21 negative_22 negative_23 negative_24 negative_25 negative_26 negative_27 negative_28 negative_29 negative_30 negative_31 negative_32 negative_33 negative_34 negative_35 negative_36 negative_37 negative_38 negative_39 negative_40 negative_41 negative_42 negative_43 negative_44 negative_45 negative_46 negative_47 negative_48 negative_49
    type dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict
    details
  • Samples:
    query positive negative_0
    {'query': '1d array in char datatype in python', 'query_id': 9} {'document': 'def _convert_to_array(array_like, dtype):\n """\n Convert Matrix attribu... {'document': 'def astype(array, y):\n """A functional form of the astype method.\n\n Args:\n ...
  • Loss: pylate.losses.contrastive.Contrastive

codefeedbackst

  • Dataset: codefeedbackst at 68d15dc
  • Size: 125,124 training samples
  • Approximate statistics based on the first 1000 samples:
    query positive negative_0 negative_1 negative_2 negative_3 negative_4 negative_5 negative_6 negative_7 negative_8 negative_9 negative_10 negative_11 negative_12 negative_13 negative_14 negative_15 negative_16 negative_17 negative_18 negative_19 negative_20 negative_21 negative_22 negative_23 negative_24 negative_25 negative_26 negative_27 negative_28 negative_29 negative_30 negative_31 negative_32 negative_33 negative_34 negative_35 negative_36 negative_37 negative_38 negative_39 negative_40 negative_41 negative_42 negative_43 negative_44 negative_45 negative_46 negative_47 negative_48 negative_49
    type dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict
    details
  • Samples:
    query positive negative_0
    {'query': 'You are tasked with implementing a Python class that extends a base class and overrides i... {'document': '```python\nclass TestsslFinding(VSFinding):\n def process_finding(self, finding):\n... {'document': '```python\nfrom googlecloudsdk.calliope import base\nfrom googlecloudsdk.api_lib.sql i...
  • Loss: pylate.losses.contrastive.Contrastive

codefeedbackmt

  • Dataset: codefeedbackmt at 68d15dc
  • Size: 52,941 training samples
  • Approximate statistics based on the first 1000 samples:
    query positive negative_0 negative_1 negative_2 negative_3 negative_4 negative_5 negative_6 negative_7 negative_8 negative_9 negative_10 negative_11 negative_12 negative_13 negative_14 negative_15 negative_16 negative_17 negative_18 negative_19 negative_20 negative_21 negative_22 negative_23 negative_24 negative_25 negative_26 negative_27 negative_28 negative_29 negative_30 negative_31 negative_32 negative_33 negative_34 negative_35 negative_36 negative_37 negative_38 negative_39 negative_40 negative_41 negative_42 negative_43 negative_44 negative_45 negative_46 negative_47 negative_48 negative_49
    type dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict
    details
  • Samples:
    query positive negative_0
    {'query': "'user': Embark on a comprehensive journey through the intricate realm of quantum computin... {'document': "Regrettably, there are no standard Python libraries available for quantum computing th... {'document': "The provided code block constructs a quantum circuit with a Hadamard gate (which allow...
  • Loss: pylate.losses.contrastive.Contrastive

stackoverflowqa

  • Dataset: stackoverflowqa at 68d15dc
  • Size: 13,934 training samples
  • Approximate statistics based on the first 1000 samples:
    query positive negative_0 negative_1 negative_2 negative_3 negative_4 negative_5 negative_6 negative_7 negative_8 negative_9 negative_10 negative_11 negative_12 negative_13 negative_14 negative_15 negative_16 negative_17 negative_18 negative_19 negative_20 negative_21 negative_22 negative_23 negative_24 negative_25 negative_26 negative_27 negative_28 negative_29 negative_30 negative_31 negative_32 negative_33 negative_34 negative_35 negative_36 negative_37 negative_38 negative_39 negative_40 negative_41 negative_42 negative_43 negative_44 negative_45 negative_46 negative_47 negative_48 negative_49
    type dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict
    details
  • Samples:
    query positive negative_0
    {'query': 'sphinxsearch-0.9 in mediawiki-1.32.0 error 2019/01/14 12:04:51 [error] 21549#21549: *3558... {'document': 'The SearchDatabase class that SphinxSearch extends was changed from REL1_31 to REL1_32... {'document': 'I was running MediaWiki 1.16.0. I upgraded to MediaWiki 1.16.2 and this resolved the ...
  • Loss: pylate.losses.contrastive.Contrastive

codetranscontest

  • Dataset: codetranscontest at 68d15dc
  • Size: 561 training samples
  • Approximate statistics based on the first 561 samples:
    query positive negative_0 negative_1 negative_2 negative_3 negative_4 negative_5 negative_6 negative_7 negative_8 negative_9 negative_10 negative_11 negative_12 negative_13 negative_14 negative_15 negative_16 negative_17 negative_18 negative_19 negative_20 negative_21 negative_22 negative_23 negative_24 negative_25 negative_26 negative_27 negative_28 negative_29 negative_30 negative_31 negative_32 negative_33 negative_34 negative_35 negative_36 negative_37 negative_38 negative_39 negative_40 negative_41 negative_42 negative_43 negative_44 negative_45 negative_46 negative_47 negative_48 negative_49
    type dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict
    details
  • Samples:
    query positive negative_0
    {'query': 'Julia set from __future__ import division\n\ncX = -0.7\ncY = 0.27015\nmaxIter = 300\n\nde... {'document': '#include <windows.h>\n#include <string>\n#include <complex>\n\nconst int BMP_SIZE = 60... {'document': '#include <windows.h>\n#include <ctime>\n#include <string>\n\nconst int BMP_SIZE = 600,...
  • Loss: pylate.losses.contrastive.Contrastive

codetransdl

  • Dataset: codetransdl at 68d15dc
  • Size: 564 training samples
  • Approximate statistics based on the first 564 samples:
    query positive negative_0 negative_1 negative_2 negative_3 negative_4 negative_5 negative_6 negative_7 negative_8 negative_9 negative_10 negative_11 negative_12 negative_13 negative_14 negative_15 negative_16 negative_17 negative_18 negative_19 negative_20 negative_21 negative_22 negative_23 negative_24 negative_25 negative_26 negative_27 negative_28 negative_29 negative_30 negative_31 negative_32 negative_33 negative_34 negative_35 negative_36 negative_37 negative_38 negative_39 negative_40 negative_41 negative_42 negative_43 negative_44 negative_45 negative_46 negative_47 negative_48 negative_49
    type dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict
    details
  • Samples:
    query positive negative_0
    {'query': 'x = tf.range(12)\ntf.size(x)\nX = tf.reshape(x, (3, 4))\ntf.zeros((2, 3, 4))\ntf.ones((2,... {'document': "x = paddle.arange(12)\nx.numel()\nX = paddle.reshape(x, (3, 4))\npaddle.zeros((2, 3, 4... {'document': 'x = torch.arange(12)\nx.numel()\nX = x.reshape(3, 4)\ntorch.zeros((2, 3, 4))\ntorch.on...
  • Loss: pylate.losses.contrastive.Contrastive

CodeSearchNet_go

  • Dataset: CodeSearchNet_go at 9f89bdc
  • Size: 166,972 training samples
  • Approximate statistics based on the first 1000 samples:
    query positive negative_0 negative_1 negative_2 negative_3 negative_4 negative_5 negative_6 negative_7 negative_8 negative_9 negative_10 negative_11 negative_12 negative_13 negative_14 negative_15 negative_16 negative_17 negative_18 negative_19 negative_20 negative_21 negative_22 negative_23 negative_24 negative_25 negative_26 negative_27 negative_28 negative_29 negative_30 negative_31 negative_32 negative_33 negative_34 negative_35 negative_36 negative_37 negative_38 negative_39 negative_40 negative_41 negative_42 negative_43 negative_44 negative_45 negative_46 negative_47 negative_48 negative_49
    type dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict
    details
  • Samples:
    query positive negative_0
    {'query': 'getStringValue func getStringValue(b []rune) (int, error) {\n\tif b[0] != \'"\' {\n\t\tre... {'document': '// getStringValue will return a quoted string and the amount\n// of bytes read\n//\n//... {'document': '// stringValue returns the string value of string literal e.', 'document_id': 18454}
  • Loss: pylate.losses.contrastive.Contrastive

CodeSearchNet_java

  • Dataset: CodeSearchNet_java at 9f89bdc
  • Size: 162,773 training samples
  • Approximate statistics based on the first 1000 samples:
    query positive negative_0 negative_1 negative_2 negative_3 negative_4 negative_5 negative_6 negative_7 negative_8 negative_9 negative_10 negative_11 negative_12 negative_13 negative_14 negative_15 negative_16 negative_17 negative_18 negative_19 negative_20 negative_21 negative_22 negative_23 negative_24 negative_25 negative_26 negative_27 negative_28 negative_29 negative_30 negative_31 negative_32 negative_33 negative_34 negative_35 negative_36 negative_37 negative_38 negative_39 negative_40 negative_41 negative_42 negative_43 negative_44 negative_45 negative_46 negative_47 negative_48 negative_49
    type dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict
    details
  • Samples:
    query positive negative_0
    {'query': 'SCryptUtil.check public static boolean check(String passwd, String hashed) {\n try... {'document': 'Compare the supplied plaintext password to a hashed password.\n\n@param passwd Plai... {'document': 'Compute the the hash value for the String.\n\n@param passwd\nthe password String\n@ret...
  • Loss: pylate.losses.contrastive.Contrastive

CodeSearchNet_javascript

  • Dataset: CodeSearchNet_javascript at 9f89bdc
  • Size: 56,734 training samples
  • Approximate statistics based on the first 1000 samples:
    query positive negative_0 negative_1 negative_2 negative_3 negative_4 negative_5 negative_6 negative_7 negative_8 negative_9 negative_10 negative_11 negative_12 negative_13 negative_14 negative_15 negative_16 negative_17 negative_18 negative_19 negative_20 negative_21 negative_22 negative_23 negative_24 negative_25 negative_26 negative_27 negative_28 negative_29 negative_30 negative_31 negative_32 negative_33 negative_34 negative_35 negative_36 negative_37 negative_38 negative_39 negative_40 negative_41 negative_42 negative_43 negative_44 negative_45 negative_46 negative_47 negative_48 negative_49
    type dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict
    details
  • Samples:
    query positive negative_0
    {'query': 'function (state, action) {\n return _.defaults({\n isValidating: action.isValidat... {'document': 'Update is validating result\n@param {State} state - state to update\n@param {Action} a... {'document': 'Updates state with newsletter settings submit error\nHolds information only for latest...
  • Loss: pylate.losses.contrastive.Contrastive

CodeSearchNet_php

  • Dataset: CodeSearchNet_php at 9f89bdc
  • Size: 240,327 training samples
  • Approximate statistics based on the first 1000 samples:
    query positive negative_0 negative_1 negative_2 negative_3 negative_4 negative_5 negative_6 negative_7 negative_8 negative_9 negative_10 negative_11 negative_12 negative_13 negative_14 negative_15 negative_16 negative_17 negative_18 negative_19 negative_20 negative_21 negative_22 negative_23 negative_24 negative_25 negative_26 negative_27 negative_28 negative_29 negative_30 negative_31 negative_32 negative_33 negative_34 negative_35 negative_36 negative_37 negative_38 negative_39 negative_40 negative_41 negative_42 negative_43 negative_44 negative_45 negative_46 negative_47 negative_48 negative_49
    type dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict
    details
  • Samples:
    query positive negative_0
    {'query': 'BreadcrumbCollection.addOne public function addOne($title, $url, array $data = [])\n {... {'document': 'Add a breadcrumb item to collection.\n\n@param string $title\n@param string $url\n... {'document': 'Add a breadcrumb to the collection.\n\n@param string $title\n@param string $url\n@...
  • Loss: pylate.losses.contrastive.Contrastive

CodeSearchNet_python

  • Dataset: CodeSearchNet_python at 9f89bdc
  • Size: 251,063 training samples
  • Approximate statistics based on the first 1000 samples:
    query positive negative_0 negative_1 negative_2 negative_3 negative_4 negative_5 negative_6 negative_7 negative_8 negative_9 negative_10 negative_11 negative_12 negative_13 negative_14 negative_15 negative_16 negative_17 negative_18 negative_19 negative_20 negative_21 negative_22 negative_23 negative_24 negative_25 negative_26 negative_27 negative_28 negative_29 negative_30 negative_31 negative_32 negative_33 negative_34 negative_35 negative_36 negative_37 negative_38 negative_39 negative_40 negative_41 negative_42 negative_43 negative_44 negative_45 negative_46 negative_47 negative_48 negative_49
    type dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict
    details
  • Samples:
    query positive negative_0
    {'query': 'AbstractElement.settext def settext(self, text, cls=\'current\'):\n """Set the tex... {'document': 'Set the text for this element.\n\n Arguments:\n text (str): The text... {'document': 'Set text value as sole Text child node of element; any existing\n Text nodes ar...
  • Loss: pylate.losses.contrastive.Contrastive

CodeSearchNet_ruby

  • Dataset: CodeSearchNet_ruby at 9f89bdc
  • Size: 24,731 training samples
  • Approximate statistics based on the first 1000 samples:
    query positive negative_0 negative_1 negative_2 negative_3 negative_4 negative_5 negative_6 negative_7 negative_8 negative_9 negative_10 negative_11 negative_12 negative_13 negative_14 negative_15 negative_16 negative_17 negative_18 negative_19 negative_20 negative_21 negative_22 negative_23 negative_24 negative_25 negative_26 negative_27 negative_28 negative_29 negative_30 negative_31 negative_32 negative_33 negative_34 negative_35 negative_36 negative_37 negative_38 negative_39 negative_40 negative_41 negative_42 negative_43 negative_44 negative_45 negative_46 negative_47 negative_48 negative_49
    type dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict
    details
  • Samples:
    query positive negative_0
    {'query': 'CelluloidPubsub.Reactor.handle_parsed_websocket_message def handle_parsed_websocket_messa... {'document': 'method that checks if the data is a Hash\n\n if the data is a hash then will stringify... {'document': "If the message can be parsed into a Hash it will respond to the reactor's websocket co...
  • Loss: pylate.losses.contrastive.Contrastive

CodeSearchNet_ccr_go

  • Dataset: CodeSearchNet_ccr_go at 9f89bdc
  • Size: 167,278 training samples
  • Approximate statistics based on the first 1000 samples:
    query positive negative_0 negative_1 negative_2 negative_3 negative_4 negative_5 negative_6 negative_7 negative_8 negative_9 negative_10 negative_11 negative_12 negative_13 negative_14 negative_15 negative_16 negative_17 negative_18 negative_19 negative_20 negative_21 negative_22 negative_23 negative_24 negative_25 negative_26 negative_27 negative_28 negative_29 negative_30 negative_31 negative_32 negative_33 negative_34 negative_35 negative_36 negative_37 negative_38 negative_39 negative_40 negative_41 negative_42 negative_43 negative_44 negative_45 negative_46 negative_47 negative_48 negative_49
    type dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict
    details
  • Samples:
    query positive negative_0
    {'query': 'getStringValue func getStringValue(b []rune) (int, error) {\n\tif b[0] != \'"\' {\n\t\tre... {'document': ' nil {\n\t\t\t\treturn 0, err\n\t\t\t}\n\n\t\t\tb[i-1] = c\n\t\t\tb = append(b[:i], b[... {'document': '\t\t\treturn 0, "", fmt.Errorf("nothing following final escape in %q", s)\n\t\t\t}\n\t...
  • Loss: pylate.losses.contrastive.Contrastive

CodeSearchNet_ccr_java

  • Dataset: CodeSearchNet_ccr_java at 9f89bdc
  • Size: 164,900 training samples
  • Approximate statistics based on the first 1000 samples:
    query positive negative_0 negative_1 negative_2 negative_3 negative_4 negative_5 negative_6 negative_7 negative_8 negative_9 negative_10 negative_11 negative_12 negative_13 negative_14 negative_15 negative_16 negative_17 negative_18 negative_19 negative_20 negative_21 negative_22 negative_23 negative_24 negative_25 negative_26 negative_27 negative_28 negative_29 negative_30 negative_31 negative_32 negative_33 negative_34 negative_35 negative_36 negative_37 negative_38 negative_39 negative_40 negative_41 negative_42 negative_43 negative_44 negative_45 negative_46 negative_47 negative_48 negative_49
    type dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict
    details
  • Samples:
    query positive negative_0
    {'query': 'SCryptUtil.check public static boolean check(String passwd, String hashed) {\n try... {'document': ' int r = (int) params >> 8 & 0xff;\n int p = (int) params & 0... {'document': '\n } catch (Exception e) {\n throw new IllegalStateException("Validity checks ...
  • Loss: pylate.losses.contrastive.Contrastive

CodeSearchNet_ccr_javascript

  • Dataset: CodeSearchNet_ccr_javascript at 9f89bdc
  • Size: 58,017 training samples
  • Approximate statistics based on the first 1000 samples:
    query positive negative_0 negative_1 negative_2 negative_3 negative_4 negative_5 negative_6 negative_7 negative_8 negative_9 negative_10 negative_11 negative_12 negative_13 negative_14 negative_15 negative_16 negative_17 negative_18 negative_19 negative_20 negative_21 negative_22 negative_23 negative_24 negative_25 negative_26 negative_27 negative_28 negative_29 negative_30 negative_31 negative_32 negative_33 negative_34 negative_35 negative_36 negative_37 negative_38 negative_39 negative_40 negative_41 negative_42 negative_43 negative_44 negative_45 negative_46 negative_47 negative_48 negative_49
    type dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict
    details
  • Samples:
    query positive negative_0
    {'query': 'function (state, action) {\n return _.defaults({\n ', 'query_id': 0} {'document': ' isValidating: action.isValidating,\n lastAction: IS_VALIDATING\n }, state)\n ... {'document': ' baz: action.payload,\n };\n default:\n return state;\n }\n}', 'd...
  • Loss: pylate.losses.contrastive.Contrastive

CodeSearchNet_ccr_php

  • Dataset: CodeSearchNet_ccr_php at 9f89bdc
  • Size: 241,177 training samples
  • Approximate statistics based on the first 1000 samples:
    query positive negative_0 negative_1 negative_2 negative_3 negative_4 negative_5 negative_6 negative_7 negative_8 negative_9 negative_10 negative_11 negative_12 negative_13 negative_14 negative_15 negative_16 negative_17 negative_18 negative_19 negative_20 negative_21 negative_22 negative_23 negative_24 negative_25 negative_26 negative_27 negative_28 negative_29 negative_30 negative_31 negative_32 negative_33 negative_34 negative_35 negative_36 negative_37 negative_38 negative_39 negative_40 negative_41 negative_42 negative_43 negative_44 negative_45 negative_46 negative_47 negative_48 negative_49
    type dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict
    details
  • Samples:
    query positive negative_0
    {'query': 'BreadcrumbCollection.addOne public function addOne($title, $url, array $data = [])\n {... {'document': ' return $this->addBreadcrumb(\n BreadcrumbItem::make($title, $url, $data)\n... {'document': ' $this->breadcrumbs->push(new Breadcrumb($title, $url));\n }', 'document_id': 135...
  • Loss: pylate.losses.contrastive.Contrastive

CodeSearchNet_ccr_python

  • Dataset: CodeSearchNet_ccr_python at 9f89bdc
  • Size: 251,758 training samples
  • Approximate statistics based on the first 1000 samples:
    query positive negative_0 negative_1 negative_2 negative_3 negative_4 negative_5 negative_6 negative_7 negative_8 negative_9 negative_10 negative_11 negative_12 negative_13 negative_14 negative_15 negative_16 negative_17 negative_18 negative_19 negative_20 negative_21 negative_22 negative_23 negative_24 negative_25 negative_26 negative_27 negative_28 negative_29 negative_30 negative_31 negative_32 negative_33 negative_34 negative_35 negative_36 negative_37 negative_38 negative_39 negative_40 negative_41 negative_42 negative_43 negative_44 negative_45 negative_46 negative_47 negative_48 negative_49
    type dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict
    details
  • Samples:
    query positive negative_0
    {'query': 'AbstractElement.settext def settext(self, text, cls=\'current\'):\n """Set the tex... {'document': ' only one text content element of each class associated with the element.\n """... {'document': '\n Jython and has been superseded by the \'ast\' module in Python 2.6 and\n ...
  • Loss: pylate.losses.contrastive.Contrastive

CodeSearchNet_ccr_ruby

  • Dataset: CodeSearchNet_ccr_ruby at 9f89bdc
  • Size: 24,918 training samples
  • Approximate statistics based on the first 1000 samples:
    query positive negative_0 negative_1 negative_2 negative_3 negative_4 negative_5 negative_6 negative_7 negative_8 negative_9 negative_10 negative_11 negative_12 negative_13 negative_14 negative_15 negative_16 negative_17 negative_18 negative_19 negative_20 negative_21 negative_22 negative_23 negative_24 negative_25 negative_26 negative_27 negative_28 negative_29 negative_30 negative_31 negative_32 negative_33 negative_34 negative_35 negative_36 negative_37 negative_38 negative_39 negative_40 negative_41 negative_42 negative_43 negative_44 negative_45 negative_46 negative_47 negative_48 negative_49
    type dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict dict
    details
  • Samples:
    query positive negative_0
    {'query': 'CelluloidPubsub.Reactor.handle_parsed_websocket_message def handle_parsed_websocket_messa... {'document': " delegate_action(data) if data['client_action'].present?\n else\n han... {'document': ' elsif data[\'method\']\n # RPC notice.\n event = { name: data[\'method\'], ...
  • Loss: pylate.losses.contrastive.Contrastive

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • learning_rate: 3e-05
  • num_train_epochs: 1
  • bf16: True
  • dataloader_num_workers: 8
  • accelerator_config: {'split_batches': True, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 3e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 8
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': True, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • project: huggingface
  • trackio_space_id: trackio
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: no
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: True
  • prompts: None
  • batch_sampler: batch_sampler
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Click to expand
Epoch Step Training Loss CodeSearchNetPython_MaxSim_ndcg@10 CodeSearchNetJavascript_MaxSim_ndcg@10 CodeSearchNetGo_MaxSim_ndcg@10 CodeSearchNetRuby_MaxSim_ndcg@10 CodeSearchNetJava_MaxSim_ndcg@10 CodeSearchNetPhp_MaxSim_ndcg@10 CodeSearchNet_mean_MaxSim_ndcg@10
0.0000 1 6.4113 - - - - - - -
0.0391 1250 3.2574 - - - - - - -
0.0781 2500 19.7862 0.9377 0.7986 0.9622 0.8487 0.8837 0.8834 0.8857
0.1172 3750 4.6875 - - - - - - -
0.1562 5000 2.3691 0.9335 0.8001 0.9614 0.8435 0.8755 0.8818 0.8826
0.1953 6250 1.4007 - - - - - - -
0.2344 7500 2.5715 0.9311 0.7960 0.9611 0.8418 0.8730 0.8866 0.8816
0.2734 8750 1.5546 - - - - - - -
0.3125 10000 0.004 0.9332 0.7972 0.9620 0.8435 0.8730 0.8850 0.8823
0.3515 11250 2.2819 - - - - - - -
0.3906 12500 14.0214 0.9324 0.7986 0.9603 0.8409 0.8717 0.8855 0.8816
0.4297 13750 2.0774 - - - - - - -
0.4687 15000 1.7724 0.9272 0.7955 0.9592 0.8381 0.8733 0.8838 0.8795
0.5078 16250 3.8234 - - - - - - -
0.5468 17500 0.7029 0.9300 0.7959 0.9594 0.8371 0.8674 0.8832 0.8788
0.5859 18750 1.5763 - - - - - - -
0.6250 20000 2.3146 0.9294 0.7986 0.9589 0.8376 0.8704 0.8829 0.8796
0.6640 21250 13.784 - - - - - - -
0.7031 22500 1.4557 0.9252 0.7927 0.9617 0.8357 0.8661 0.8839 0.8775
0.7421 23750 4.973 - - - - - - -
0.7812 25000 2.206 0.9240 0.7939 0.9623 0.8354 0.8639 0.8857 0.8775
0.8203 26250 0.7343 - - - - - - -
0.8593 27500 0.727 0.9251 0.7926 0.9608 0.8362 0.8676 0.8829 0.8775
0.8984 28750 1.7905 - - - - - - -
0.9374 30000 0.7259 0.9244 0.7937 0.9607 0.8357 0.8655 0.8824 0.8771

Framework Versions

  • Python: 3.12.12
  • Sentence Transformers: 5.1.1
  • PyLate: 1.3.4
  • Transformers: 4.57.3
  • PyTorch: 2.9.0+cu128
  • Accelerate: 1.12.0
  • Datasets: 4.4.2
  • Tokenizers: 0.22.2

Citation

BibTeX

LateOn-Code

@misc{LateOn-Code,
  title  = {LateOn-Code: a Family of State-Of-The-Art Late Interaction Code Retrieval Models},
  author = {Chaffin, Antoine},
  url    = {https://huggingface.co/collections/lightonai/lateon-code},
  year   = {2026}
}

ColGrep

@software{next-plaid,
  title  = {NextPlaid, ColGREP: Multi-vector search, from database to coding agents.},
  url    = {https://github.com/lightonai/next-plaid},
  author = {Raphaël Sourty},
  year   = {2026},
}

CoRNStack

@inproceedings{DBLP:conf/iclr/SureshRXNMDJ25,
  author       = {Tarun Suresh and
                  Revanth Gangi Reddy and
                  Yifei Xu and
                  Zach Nussbaum and
                  Andriy Mulyar and
                  Brandon Duderstadt and
                  Heng Ji},
  title        = {CoRNStack: High-Quality Contrastive Data for Better Code Retrieval
                  and Reranking},
  booktitle    = {The Thirteenth International Conference on Learning Representations,
                  {ICLR} 2025, Singapore, April 24-28, 2025},
  publisher    = {OpenReview.net},
  year         = {2025},
  url          = {https://openreview.net/forum?id=iyJOUELYir},
  timestamp    = {Sun, 25 May 2025 21:25:19 +0200},
  biburl       = {https://dblp.org/rec/conf/iclr/SureshRXNMDJ25.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}

CoIR

@inproceedings{li2025coir,
  title     = {Coir: A comprehensive benchmark for code information retrieval models},
  author    = {Li, Xiangyang and Dong, Kuicai and Lee, Yi Quan and Xia, Wei and Zhang, Hao and Dai, Xinyi and Wang, Yasheng and Tang, Ruiming},
  booktitle = {Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
  pages     = {22074--22091},
  year      = {2025}
}

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
  title     = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
  author    = "Reimers, Nils and Gurevych, Iryna",
  booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
  month     = "11",
  year      = "2019",
  publisher = "Association for Computational Linguistics",
  url       = "https://arxiv.org/abs/1908.10084"
}

PyLate

@inproceedings{DBLP:conf/cikm/ChaffinS25,
  author       = {Antoine Chaffin and
                  Rapha{"{e}}l Sourty},
  editor       = {Meeyoung Cha and
                  Chanyoung Park and
                  Noseong Park and
                  Carl Yang and
                  Senjuti Basu Roy and
                  Jessie Li and
                  Jaap Kamps and
                  Kijung Shin and
                  Bryan Hooi and
                  Lifang He},
  title        = {PyLate: Flexible Training and Retrieval for Late Interaction Models},
  booktitle    = {Proceedings of the 34th {ACM} International Conference on Information
                  and Knowledge Management, {CIKM} 2025, Seoul, Republic of Korea, November
                  10-14, 2025},
  pages        = {6334--6339},
  publisher    = {{ACM}},
  year         = {2025},
  url          = {https://github.com/lightonai/pylate},
  doi          = {10.1145/3746252.3761608},
}
Downloads last month
47
Safetensors
Model size
16.8M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train lightonai/LateOn-Code-edge

Collection including lightonai/LateOn-Code-edge

Papers for lightonai/LateOn-Code-edge

Evaluation results