AI & ML interests

None defined yet.

Recent Activity

Ujjwal-Tyagi 
posted an update 1 day ago
Ujjwal-Tyagi 
posted an update 2 days ago
Ujjwal-Tyagi 
posted an update 7 days ago
view post
Post
2551
I am very excited to see the release of nyuuzyou/gitee-code. This is exactly what I have been looking for. Thank you to @nyuuzyou for his hard work on this.
·
Ujjwal-Tyagi 
posted an update 8 days ago
view post
Post
2289
I’m looking for AI engineers and researchers to join my company as part of the core team. We’ll be working on cutting-edge research and hands-on implementation across LLMs and related systems. I’m especially interested in founding engineers for my ai startup, who want to build from the ground up and shape both the product and the research direction. If this sounds interesting to you, reply to this post and message me on Discord — my username is "ujjwal_tyagi.shirova", Please also attach your Resume and Details of your open source projects (if any related to LLMs) on discord, avoid sharing here as a reply to this post.
Ujjwal-Tyagi 
posted an update 11 days ago
view post
Post
2674
For more better details and analysis, you can read the article here: https://huggingface.co/blog/Ujjwal-Tyagi/steering-not-censoring, We are sleepwalking into a crisis. I am deeply concerned about AI model safety right now because, as the community rushes to roll out increasingly powerful open-source models, we are completely neglecting the most critical aspect: safety. It seems that nobody is seriously thinking about the potential consequences of unregulated model outputs or the necessity of robust guardrails. We are essentially planting the seeds for our own destruction if we prioritize raw performance over security.

This negligence is terrifyingly evident when you look at the current landscape. Take Qwen Image 2512, for example; while it delivers undeniably strong performance, it has incredibly weak guardrails that make it dangerous to deploy. In stark contrast, Z Image might not get as much hype for its power, but it has much better safety guardrails than Qwen Image 2512.

It is imperative that the open-source community and developers recognize that capability without responsibility is a liability. We must actively work on protecting these models from bad actors who seek to exploit them for malicious purposes, such as generating disinformation, creating non-consensual imagery, or automating cyberattacks. It is no longer enough to simply release a powerful model; we must build layers of defense that make it resistant to jailbreaking and adversarial attacks. Developers need to prioritize alignment and robust filtering techniques just as much as they prioritize benchmark scores. We cannot hand such potent tools to the world without ensuring they have the safety mechanisms to prevent them from being turned against us.
·
mrfakename 
posted an update about 2 months ago
view post
Post
9227
Excited to share that I've joined the Hugging Face Fellows program! 🤗

Looking forward to contributing to & working more closely with the open-source ecosystem - huge thanks to everyone who's supported me on this journey! 🚀
meg 
posted an update 3 months ago
view post
Post
3934
🤖 Did you know your voice might be cloned without your consent from just *one sentence* of audio?
That's not great. So with @frimelle , we brainstormed a new idea for developers who want to curb malicious use: ✨The Voice Consent Gate.✨
Details, code, here: https://huggingface.co/blog/voice-consent-gate
  • 3 replies
·
mrfakename 
posted an update 3 months ago
view post
Post
6174
Trained a model for emotion-controllable TTS based on MiMo audio on LAION's dataset.

Still very early and does have an issue with hallucinating but results seem pretty good so far, given that it is very early into the training run.

Will probably kick off a new run later with some settings tweaked.

Put up a demo here: https://huggingface.co/spaces/mrfakename/EmoAct-MiMo

(Turn 🔊 on to hear audio samples)
·
meg 
posted an update 4 months ago
view post
Post
2923
🤖 As AI-generated content is shared in movies/TV/across the web, there's one simple low-hanging fruit 🍇 to help know what's real: Visible watermarks. With the Gradio team, I've made sure it's trivially easy to add this disclosure to images, video, chatbot text. See how: https://huggingface.co/blog/watermarking-with-gradio
Thanks to the code collab in particular from @abidlabs and Yuvraj Sharma.
hannayukhymenko 
posted an update 5 months ago
view post
Post
3000
Releasing the Jupyter Agent Dataset! 🚀

Built from 7 TB of real Kaggle datasets + 20k notebooks, creating real code exec traces using Qwen3-Coder and E2B.
Training on this data dramatically improves the ability to execute code and analyze data.

We ( @baptistecolle @hannayukhymenko @lvwerra ) have created a novel synthetic data generation pipeline with efficient scaffolding, which gives a big performance boost after training your coding agent🔥With the help of real Kaggle notebooks and datasets we generate synthetic notebooks which aim to analyze datasets and answer factual questions about them more efficiently. We simulate a real code execution environment by prompting LLMs or with the help of E2B sandboxes. We have built a dataset of 50k+ high-quality LLM-generated notebooks which can help your agent become better at performing data analysis and question answering.

Link: https://huggingface.co/datasets/data-agents/jupyter-agent-dataset
  • 3 replies
·
meg 
posted an update 5 months ago
clem 
posted an update 6 months ago
meg 
posted an update 6 months ago
view post
Post
457
🤖 ICYMI: Yesterday, Hugging Face and OpenAI partnered to bring open source GPT to the public. This is a Big Deal in "AI world".

0. Common ground setting: OpenAI is the ChatGPT people. An “open source” model is one whose weights are available — that means the model can be “yours”.
1. You don’t have to interact with the company directly, nor give them your interactions, to use the system. The company can't "surveil" you.
2. You can evaluate the unique contributions of their SOTA model much more rigorously than you can when there are collections of models+code behind a closed API. You can find out specifically what the model can and can't do.
3. And you can directly customize it for whatever you'd like. Fine-tuning, wherein you give the model data that's tailored to your use cases and train it some more on that data, is trivial* when you have the model weights.
*Provided you have the compute.
4. You can directly benchmark whatever you'd like. Biases? Energy usage? Strengths/weaknesses? Go for it. You wants it you gots it--this transparency helps people understand SOTA *in general*, not just for this model, but points to, e.g., what's going on with closed Google models as well.
5. One of the most powerful things about "openness" that I've learned is that it cultivates ecosystems of collaborators building on top of one another's brilliance to make systems that are significantly better than they would be if created in isolation.
But, caveat wrt my own philosophy...
6. I do not take it as a given that advancing LLMs is good, and have a lot more to say wrt where I think innovation should focus more. For example, a focus on *data* -- curation, measurement, consent, credit, compensation, safety -- would deeply improve technology for everyone.
7. The transparency this release provides is massive for people who want to *learn* about LLMs. For the next generation of technologists to advance over the current, they MUST be able to learn about what's happening now. (cont...)
  • 1 reply
·
meg 
posted an update 6 months ago
view post
Post
508
🤖 👾 Thanks so much to BBC News and the stellar Suranjana Tewari for having me on to talk about US <—> China relationship in AI, and what it means for AI ethics.
AtAndDev 
posted an update 6 months ago
view post
Post
591
Qwen 3 Coder is a personal attack to k2, and I love it.
It achieves near SOTA on LCB while not having reasoning.
Finally people are understanding that reasoning isnt necessary for high benches...

Qwen ftw!

DECENTRALIZE DECENTRALIZE DECENTRALIZE
clem 
posted an update 7 months ago