SpiralFormer: Looped Transformers Can Learn Hierarchical Dependencies via Multi-Resolution Recursion
Abstract
SpiralFormer introduces a multi-resolution recursion schedule in looped Transformers to improve efficiency and hierarchical dependency learning across different scales.
Recursive (looped) Transformers decouple computational depth from parameter depth by repeatedly applying shared layers, providing an explicit architectural primitive for iterative refinement and latent reasoning. However, early looped Transformers often underperform non-recursive baselines of equal compute. While recent literature has introduced more effective recursion mechanisms to mitigate this gap, existing architectures still operate at a fixed, full-token resolution, neglecting the potential efficiency of computing over compressed latent representations. In this paper, we propose SpiralFormer, a looped Transformer that executes recurrence under a multi-resolution recursion schedule. We provide probing evidence that multi-resolution recursion enables the model to learn hierarchical dependencies by inducing iteration-wise functional specialization across different scales. Empirically, SpiralFormer achieves better parameter and compute efficiency than both looped and non-looped baselines across model scales from 160M to 1.4B, establishing sequence resolution as a potential axis for scaling recursive architectures.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper